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1. Introduction 

Over the past several years, the US Army Research Laboratory (ARL) has 

supported the development and testing of Army artillery meteorological (MET) 

systems such as the current Profiler Virtual Module (PVM) and earlier types 

including the Computer, Meteorological Data–Profiler (CMD-P) and the 

Meteorological Measuring Set – Profiler (MMS-P). ARL supported the acquisition 

process by performing developmental tests of accuracy of the PVM and earlier 

systems. The accuracy testing compared output from the PVM (and earlier the 

CMD-P and MMS-P) with MET data from radiosonde observations (RAOBs) in 

terms of MET variables (e.g., wind speed) and measures of artillery effectiveness 

(e.g., radial miss distance [RMD]) as computed using a trajectory simulator 

program, the General Trajectory (GTRAJ) program developed by the US 

Armaments Research and Development Center (ARDEC). Frehlich (2006) 

describes a somewhat earlier version of GTRAJ, and McCoy (2012) provides some 

of the theory and practice behind it. The comparisons presented in a recent paper 

by Cogan (2017) employed similar procedures, but using spreadsheets and 

spreadsheet functions to produce the relevant statistics. Data from the GTRAJ 

output were manually entered into the spreadsheets.  

This report describes software that mostly automates the analysis of the GTRAJ 

output and can lead to a major reduction in analysis time, perhaps to less than 20% 

of that needed earlier. The software consists of 3 related Python programs. The first 

and second programs input GTRAJ output files and either write the output from the 

program as a set of 2 tables in a single file for each GTRAJ file or append the output 

into a larger file for later processing. The first program takes an indicator from a 

parameter file on whether or not to append the output. It also inputs the names of 

the sources of MET data such as from a model or a RAOB from the same parameter 

file. The second program produces the same output as the first, but takes the 

information on whether or not to append output and the MET data source names 

from the command line. A third program produces overall means, medians, and 

standard deviations from the larger (append) file. Here the procedure for applying 

the software is described, samples of input and output are presented, and the code 

for the first and third programs are presented in Appendix A and B, respectively. 

The second program differs only slightly from the first and is not shown, but some 

differences are noted at the beginning of Appendix A. 

For convenience, shorthand terms are used to identify the MET data sources for the 

sample output presented in this report. WRF1 refers to MET data computed from a 

Weather Research and Forecasting (WRF) model integration for the site of the 

coincident RAOB, WRF2 refers to data computed from a second WRF model 
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integration for a site approximately 30 km to the west of the RAOB site, and R 

refers to data from the coincident RAOB. All 3 are contained within a single 

GTRAJ output file. To demonstrate the method for more than 2 MET data sources, 

additional GTRAJ output files labeled WRFn, where n >2, were produced by 

manually modifying the WRF1 or WRF2 files. Those latter files served to test the 

software of this report and do not represent actual atmospheric situations. The WRF 

model is described in Skamarock et al. (2008), and although some changes have 

been implemented (Lee et al. 2012; Reen et al. 2014), the basic algorithms and 

processes remain much the same. The sources of MET data may also include other 

observation systems such as for a comparison between a remote sensing system 

(e.g., lidar wind profiler combined with, for example, a microwave radiometer) and 

a RAOB. 

2. Processing GTRAJ Output 

The program that processes a single or multiple GTRAJ output files was developed 

for comparisons of results from typically a first model integration (WRF1) versus 

results from a coincident RAOB with results from one or more other model 

integrations (e.g., WRF2, WRF3) versus RAOB results. It runs on a Linux 

operating system (OS) computer, but should work for other OSs that can run Python 

3 programs although some minor changes may be needed. The program processes 

a GTRAJ output text file that contains results from 2 or more simulations, where 

each simulation uses a computer MET message (METCM) derived from a model 

integration or the coincident RAOB or other source of “truth” data. US Army FM 

3-09.15 (HDA 2007) describes the METCM and provides information on its 

application.  

The output trajectory data are reported periodically along the projectile’s flight path 

and includes the total radial distance (horizontal distance from gun to projectile), 

range (horizontal distance along the aiming or gun azimuth), deflection (horizontal 

distance perpendicular to range), height above ground (assuming smooth terrain 

from gun to target) of the projectile, and other user selected parameters. For these 

simulations the firing parameters (such as quadrant elevation, projectile weight, 

muzzle velocity, etc.) remained the same for all the runs. For each METCM, the 

simulated fires were at either 4 (i.e., toward the north, east, south, and west) or 8 

(i.e., toward the north, northeast, east, southeast, etc.) directions of fire (azimuth of 

gun), so as to have an idea of the variation with direction (azimuth) and reduce the 

bias that could result from using one direction only. Consequently, each output file 

consisted of 3 × 4 = 12 or 3 × 8 = 24 sets of firing data output, respectively, for 

comparisons of trajectories computed using METCMs from 2 model integrations 
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versus that from a RAOB. More or fewer azimuths, or more or fewer model 

integrations, will lead to larger or smaller sets of firing data per output file.  

The meteorological data sources (e.g., WRF1, WRF2) are specified via a parameter 

file or as input from the command line. The former may be more convenient for 

processing of numerous GTRAJ output files. The operation of the program with a 

parameter file is straightforward in that the user only needs to type python3 plus 

the program name and input filename, in that order. For the version using 

command-line input, after the name of the program type the name of the GTRAJ 

output file used as input followed by the parameter for appending or not appending 

the output plus the MET data source identifiers. The entire set of MET data source 

identifiers on the command line needs to be enclosed in either single (‘) or double 

(“) quotes (which forms a string in Python); either type of quotes can be used, but 

must be the same before and after the source names. The last source identified in 

the parameter file or command line list is considered the “truth” sounding, such as 

a RAOB. It is assumed there is only one “truth” sounding. Currently, the MET data 

source name must appear as the first part or prefix of the name of the METCM used 

for input to GTRAJ, and it must be separated from the rest of the name by an 

underscore (e.g., WRF1_MHX_20170514). The MET data source identifier has to 

relate to only one METCM within each GTRAJ output file. For example, one 

cannot have WRF1_MHX_2017081500 and WRF1_LMN_2017081500 within the 

same GTRAJ output file.  

The procedure to use the program using the parameter file is shown in section 2.1 

and the program code is presented in Appendix A. The command-line version of 

the program presented in section 2.2 primarily differs in the Python statements that 

are used to define the MET data sources. The Python program and the parameter 

file (if used) are in the same directory. The GTRAJ output files used as input may 

be in the same or another directory. If a separate directory is used include the file 

path as part of the input filename. The output file from these programs will appear 

in the same directory as the input file. 

Each output set contains 2 tables, the first table has the RMDs for trajectories 

computed using METCMs from each data source (e.g., WRF1) relative to those 

computed using the coincident RAOB at the listed azimuths. For example, “WRF1 

3200 112.4” refers to a simulation using the METCM derived from WRF1 for a 

firing direction or azimuth of 3200 mils (180°) and yields a RMD (WRF1 vs. R) of 

112.4 m. RMD for these simulations is defined as 

 RMD = ((∆ range)2 + (∆ deflection)2)1/2, (1) 

where ∆ represents the difference between the value for a data source less that for 

the coincident RAOB (e.g., ∆2-R = WRF2 value – RAOB value). The RMDs are 
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calculated in terms of meters and then converted to percent of the radial distance 

computed using the METCM from the RAOB (or other “truth” sounding). Both 

values are printed in the first table. 

The second table in the set has the means, medians, and standard deviations of the 

RMDs over all the azimuths for each MET data source. These quantities are 

calculated for the RMDs both in meters and as the percentage of radial distance; 

both values are printed in the second table. 

2.1 Program with Parameter File 

To run the program that uses a parameter file, first ensure the parameter file, named 

input_sources, is in the same directory as the Python program gtout.py. The 

parameter file has to have the parameter for appending or not appending the output  

(a = append) followed by the identifiers of the MET data sources space-delimited 

and listed on the first line. Normally, the MET data sources are listed in the order 

they appear in the GTRAJ output file. For example, the line in the parameter file 

may list ‘n WRF1 WRF2 R’ for not to append (i.e., a single output file), METCMs 

from 2 model integrations and the coincident RAOB. They must have the same 

names as the prefixes in the METCM files named in the GTRAJ output file (e.g., 

WRF1). The “truth” sounding is the last MET data source (e.g., in the previous 

example R indicating RAOB is the “truth” sounding). Section 2.3 has additional 

information on the selection, number, and ordering of the MET data source 

identifiers. 

On the command line, enter the name of the program and the input GTRAJ file. 

python3  gtout.py INPUT_FILE , 

where INPUT_FILE is the name of the GTRAJ output file (input to program). The file 

produced by the program has the addition of _out to the input file name for the case 

of not appending and has the name output-tables for appending.  

For example,  

python3  gtout.py DEN_2017-09-17-00.out , 

produces an output file DEN_2017-09-17-00.out_out (not appending) or 

output_tables (appending). The filenames for GTRAJ output are chosen by the 

user and do not have to have the .out extension. However, the default name is 

gtraj.out, and that extension is often used. The name for the aforementioned 

examples could have been DEN_2017-09-17-00, DEN_2017-09-17_test, or some 

other name.  
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2.2 Program with Source Names on Command Line 

The procedure for the version with entry of the MET data source names via the 

command line closely follows that for the one using the parameter file (“cl” 

indicates the command line version). The program reads the command-line list that 

contains the append parameter and then the source names as a single string; the 

source names must be enclosed in single or double quotes. 

On the command line, enter the following: 

python3 gtoutcl.py INPUT_FILE X ’SOURCE-1 SOURCE-2 … SOURCE-N’ , 

where INPUT_FILE is the name of the GTRAJ output file as before, X is the 

append parameter (a = append and any other character [e.g., n] = do not append), 

and SOURCE-1 … SOURCE-N are generic names for the sources of the MET data 

in the GTRAJ output. SOURCE-N is the name of the source of the “truth” sounding 

(e.g., RAOB). The output has the addition of _out to the input file name (not 

appending) or the name output_files (appending) as before. 

For example, 

python3 gtoutcl.py DEN_2017-09-09-17-00.out n ‘WRF1 WRF2 R’, 

where n indicates single file output (a = append), and WRF1, WRF2, and R indicate 

METCMs that were produced from the 2 model integrations and from RAOB data. 

In this example, the program will produce an output file with the same name as for 

the gtout.py program without appending (DEN_2017-09-17-00.out_out). Note that 

one has to enclose the source names in either double or single quotes.  

2.3 A Word on METCM Filenames 

The filenames for the METCMs used by the GTRAJ program from whatever source 

must begin with the source identifier (e.g., WRF2) followed by an underscore ( _ ) 

and the rest of the name, usually with the site identifier followed by a string 

indicating the date and time (e.g., WRF1_LMN_2017081500 for WRF integration 

1 for Lamont, OK, at 00 Coordinated Universal Time [UTC] on 15 August 2017). 

The last source name in the parameter file or command-line list is considered the 

“truth” sounding. However, if a different order of the prefixes in the naming 

convention is chosen (e.g., LMN_WRF1_2017081500), minor changes to only a 

few statements should enable the programs to run properly.  

If one or more of the MET data source names in the parameter file (or on the 

command line) is/are not the same as in the GTRAJ output file the program will 

partly run and then produce an error message (KeyError: followed by a string, 

which may represent a number). That includes the situation where more sources 
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appear in the parameter file or command line than are in the GTRAJ output file 

(i.e., produces a KeyError error message). If the order that the MET data source 

names appear is different, the program will run, but the order in which the output 

data are listed in the output tables will be different. For example, WRF1, R, WRF2 

as sources in that order will lead to comparisons of WRF1 to WRF2 and R to 

WRF2, treating data from WRF2 as the “truth” values. If the parameter file or the 

command line has fewer data sources than the GTRAJ file, then the program will 

run normally and produce output for the sources listed in the parameter file or 

command line. However, at least 2 MET data sources, one of which is considered 

the “truth” source, are required since differences are computed.  

The ability of the program to produce output whatever the order of the MET data 

source names allows additional comparisons to be made. For example, one may 

want to compare results from one type of model output (e.g., WRF) with another 

type of model output (e.g., GFS). Also, one may want to investigate the changes in 

RMD when one of the other sources is used as the “truth” sounding. Another 

potential comparison could involve use of different azimuths or number of 

azimuths. For example, a comparison of the use of 4 azimuths versus 8 or 16 

azimuths on mean or median values for a given site. Another may consider the 

effect of one set of directions versus another (e.g., north and west vs. south and 

east). 

3. Difference Statistics from Multiple Tables 

A third program, gtstats.py, is used to compute basic differences statistics for the 

RMDs from all tables of the individual RMDs in the output_tables file. Means, 

medians, and standard deviations of the RMDs for each MET data source over all 

azimuths from all tables of individual RMDs for each site are computed from the 

respective values. An individual RMD refers to an RMD derived from a single data 

source relative to the coincident RAOB (or other “truth” sounding) calculated for 

one site at one time at one azimuth (e.g., an RMD for WRF1 vs. RAOB computed 

for MHX [Newport, VA] at 2017082300 for an azimuth of 1600 mils). The MET 

data sources are defined from the identifiers in the first line of output_tables. The 

procedure for running this program, gtstats.py is as follows: 

python3 gtstats.py INPUT_FILE, 

where INPUT_FILE is the output file from gtout.py or gtoutcl.py, that is, 

output_tables if using the default name.  

For example, 

python3 gtstats.py output_tables, 
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where the names of the MET data sources are extracted from the first line of 

output_tables.  

The output filename is RMD_statistics_out, which is the default. That may be 

changed in the program by modifying one statement. 

If the MET data sources in output_tables are not the same in the tables from 

consecutive program runs after the first one, then the program will ignore those not 

listed in the first line of the first run. Therefore, it is important to ensure the first 

line of the first run (top header line of the first set of 2 tables) is correct. If the 

azimuths are not the same, then the program will run, but the results may not be 

valid. The program will run for one or more azimuths for each data source, but there 

must be at least 3 samples (individual RMDs) for computation of standard 

deviation. When there are fewer than 3 samples for a data source, the program will 

print a message to the screen before ending normally (NO STANDARD 

DEVIATION COMPUTED FOR DATA LIST N - LESS THAN 3 SAMPLES !!, 

where N is the number of the data source [e.g., 0 or 1 = WRF1 or WRF2, 

respectively]). The values for standard deviation will be listed as -999, the missing 

data indicator. Appendix B contains details on this program.  

4. Input and Output Samples 

The type of input file from GTRAJ is the same for gtout.py and gtoutcl.py (i.e., the 

same input file may be used for both programs). Table 1 presents the first section 

of a sample GTRAJ output file. Only the listing for 1 of 8 azimuths for 1 of 3 MET 

data sources are shown here (24 listings altogether) given the size of the file and 

that subsequent sets have the same format and parameters. The output contains 

trajectory data, intermediate values (e.g., wind velocity in terms of the components 

in the range and deflection directions), values of many firing and other parameters 

most of which were not changed from their default values, and so on. The output 

shown here has trajectory values (e.g., range and deflection) every 10 s. The user 

can change the frequency of trajectory output and add or remove output of some 

variables (e.g., speed of the projectile in terms of Mach number) when executing 

the GTRAJ program. 
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Table 1 Output from the first of 24 listings within a single GTRAJ output file. The GTRAJ 

output file included 3 MET data sources over 8 azimuths. Note that in GTRAJ the radial 

distance (distance from gun to target) is called range. In the output listing at the bottom, the 

actual range is named E1, deflection E3, and height above the Earth’s surface E2. 

 

 

 

The output files from gtout.py or gtoutcl.py are the same. Table 2 shows the output 

tables for the GTRAJ file used for Table 1. The upper table has individual RMDs 

in terms of meters and percent radial distance (named range in GTRAJ) for each 
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MET data source or system and azimuth (mils). The lower table has the mean and 

median values for each MET data source in terms of meters and percent radial 

distance. Although percent range is the common terminology, in these simulations 

it is actually percent radial distance. The RMD in m is divided by the radial distance 

computed for the RAOB to obtain the percent radial distance. 

Table 2 RMDs (data source – RAOB) computed for Lamont, Oklahoma, on 20170815 at 

00 UTC for each MET data source and azimuth (upper table), and mean and median values 

for each MET data source (lower table). Azimuth is in mils and % refers to percent radial 

distance (aka % range). 

RMDs for WRF1 and WRF2 less R 

 for site and date/time: LMN_2017081500 

 

System    Azimuth     RMD (m)     RMD (%) 

WRF1         0.0       44.7       0.192 

WRF2         0.0       26.6       0.114 

WRF1       800.0       48.9       0.207 

WRF2       800.0       38.0       0.161 

WRF1      1600.0       34.7       0.146 

WRF2      1600.0       35.2       0.148 

WRF1      2400.0       10.4       0.044 

WRF2      2400.0       17.9       0.076 

WRF1      3200.0       19.3       0.083 

WRF2      3200.0        6.7       0.029 

WRF1      4000.0       25.4       0.111 

WRF2      4000.0       19.9       0.087 

WRF1      4800.0       10.6       0.047 

WRF2      4800.0       14.8       0.065 

WRF1      5400.0       14.0       0.061 

WRF2      5400.0        1.3       0.006 

 

System         Mean RMD (m)  Mean RMD (%) 

WRF1_mean_RMD       26.02      0.111 

WRF2_mean_RMD       20.06      0.086 

WRF1_median_RMD     22.39      0.097 

WRF2_median_RMD     18.90      0.081 

 

Table 3 shows the output for 2 instances of gtout.py (or gtoutcl.py) where the set 

of 2 tables from each program execution are appended. There is no preset limit to 

the number of table sets that can be appended. However, they should relate to the 

same MET data sources and have the same azimuths.  
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Table 3 Output from gtout.py for 2 sites, 2 sources of MET data, and 8 azimuths  

RMDs for WRF1 and WRF2 less R              

 for site and date/time: ETGB_2016-02-07-00 

 

System    Azimuth     RMD (m)     RMD (%)   

WRF1         0.0      149.0       0.638 

WRF2         0.0      198.3       0.849 

WRF1       800.0      167.6       0.715 

WRF2       800.0      122.5       0.523 

WRF1      1600.0      267.5       1.170 

WRF2      1600.0      234.7       1.027 

WRF1      2400.0      262.9       1.195 

WRF2      2400.0      274.5       1.248 

WRF1      3200.0      166.1       0.779 

WRF2      3200.0      195.4       0.916 

WRF1      4000.0      144.1       0.677 

WRF2      4000.0      122.5       0.576 

WRF1      4800.0      230.9       1.056 

WRF2      4800.0      218.9       1.002 

WRF1      5400.0      248.5       1.104 

WRF2      5400.0      272.3       1.210 

 

System         Mean RMD (m)  Mean RMD (%)   

WRF1_mean_RMD      204.57      0.917 

WRF2_mean_RMD      204.89      0.919 

WRF1_median_RMD    199.24      0.918 

WRF2_median_RMD    208.62      0.959 

 

 

RMDs for WRF1 and WRF2 less R              

 for site and date/time: LMN_2017081500 

 

System    Azimuth     RMD (m)     RMD (%)   

WRF1         0.0       44.7       0.192 

WRF2         0.0       26.6       0.114 

WRF1       800.0       48.9       0.207 

WRF2       800.0       38.0       0.161 

WRF1      1600.0       34.7       0.146 

WRF2      1600.0       35.2       0.148 

WRF1      2400.0       10.4       0.044 

WRF2      2400.0       17.9       0.076 

WRF1      3200.0       19.3       0.083 

WRF2      3200.0        6.7       0.029 

WRF1      4000.0       25.4       0.111 

WRF2      4000.0       19.9       0.087 

WRF1      4800.0       10.6       0.047 

WRF2      4800.0       14.8       0.065 

WRF1      5400.0       14.0       0.061 

WRF2      5400.0        1.3       0.006 

 

System         Mean RMD (m)  Mean RMD (%)   

WRF1_mean_RMD       26.02      0.111 

WRF2_mean_RMD       20.06      0.086 

WRF1_median_RMD     22.39      0.097 

WRF2_median_RMD     18.90      0.081 

 

The output from the program, gtstats.py, that computes overall means, medians, 

and standard deviations over all the RMDs for each source of MET data (e.g., 

WRF1) obtains input from the file output_tables (if the default name is used). As 
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noted previously, the names of the MET data sources are extracted from the first 

line of the input file. Table 4 presents a sample of output from the gtstats.py 

program where the input file (output_tables) has the 2 sites (ETGB and LMN) and 

8 azimuths of Table 3. 

Table 4 Output from gtstats.py, where the input file (output_tables) contained tables for 

the 2 sites and 8 azimuths of Table 3 

Means, medians, and standard deviations of 16 individual RMDs 

 

        Means 

 Data Source     (m)   (%Range) 

    WRF1       115.29   0.514 

    WRF2       112.47   0.502 

 

        Medians 

 Data Source     (m)   (%Range) 

    WRF1        96.50   0.422 

    WRF2        80.25   0.342 

 

        Std Deviations 

 Data Source     (m)   (%Range) 

    WRF1        99.58   0.448 

    WRF2       103.92   0.468  

5. Summary and Conclusion 

This report presented short descriptions of 2 Python 3 programs that extract 

trajectory information and certain parameters such as site and azimuth from GTRAJ 

output files and create tables of RMD by source of MET data and azimuth as well 

as statistics for each source over all azimuths. The first obtains the names of the 

sources of MET data from a parameter file, and the second takes the names of the 

MET data sources from the command line. By setting one parameter in the 

parameter file or the command line, each program can append the output from 

processing 2 or more GTRAJ output files to a single file rather than one file for 

each GTRAJ output file processed. For many applications, use of the parameter file 

version could help reduce time and effort, and reduce the opportunity for incorrect 

entries (e.g., typos on the command line). The third program described in this report 

computes the mean, median, and standard deviation for each source of MET data 

over all the azimuths and sites.  

An important consideration is the greatly decreased time to process the GTRAJ 

output file data. Based on some sample runs, less than 20% of the time is needed 

compared with using spreadsheets for the calculation of the statistics. However, 

care must be taken to avoid processing a GTRAJ output file more than once, thereby 

creating duplicate tables in the file containing the appended data. Another 
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consideration concerns verifying that the azimuths are the same for all tables in the 

file with the appended data. If not the same, the program for the overall statistics 

will run, but the results could be misleading. 

Currently the processing assumes the GTRAJ file contains values for one or more 

sources of MET data that will be compared with values from a “truth” source. The 

sources of MET data (as for this report) may be numerical weather prediction 

models at any scale, global to microscale. However, the sources also may include 

observation systems. The “truth” source of MET data usually is a coincident 

RAOB, but also could be another source of a sounding (e.g., radar or lidar wind 

profiler combined with a microwave radiometer). The programs described herein 

provide a means to process GTRAJ output files far more rapidly while reducing the 

chance of some types of data entry errors. However, GTRAJ output having, for 

example, a different ordering of the trajectory output columns or other related 

changes would require modifications to the programs that should not require 

extensive effort. Nevertheless, the programs of this report can serve as templates 

for processing other variants of the GTRAJ output files or output files from other 

trajectory simulator programs.  
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Appendix A. Python 3 Code (gtout.py) 
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This Appendix has the Python 3 code (gtout.py) for extraction of relevant General 

Trajectory (GTRAJ) simulation values from a GTRAJ output file and computation 

of mean, median, and standard deviation values for 2 or more sources of computer 

meteorological message (METCM) data over a set of several azimuths. The 

parameter on whether or not to append the output (i.e., a = append) and the data 

sources (e.g., WRF1) are read from a parameter file with the append parameter as 

the first item in a line that includes the METCM data sources. For the command-

line version (gtoutcl.py), the append parameter follows the input filename, which 

in turn is followed by a single string that contains all the sources of METCM data.  

 
#!/bin/env python3 
 
import re 
import sys 
from collections import defaultdict 
import string 
import statistics 
import os 
import ntpath 
 
#NOTE: sys.argv[0] is the program (e.g., gtout.py). 
with open('input_sources', "r") as p: 
     data_sources = p.readline() #Reads one line that has the 3 data sources (e.g., GFS). 
     source_list = data_sources.split() 
     append_or_not = source_list[0] #Read first item in list: the append or not indicator (a for 
append). 
     del source_list[0] 
     source_len = len(source_list) 
 
with open(sys.argv[1], "r") as f: 
     input_data = f.readlines()  #Everything read in. 
 
if append_or_not == 'a': 
   output_file = 'output_tables' 
else: 
   output_file = sys.argv[1] + "_out" 
print('\nReading from file: ', sys.argv[1], "\n\n") 
 
#Prepare variable names. 
 
dataval_list = []    # Set up empty list for data values. 
difval_list = []        # Set up empty list for difference values. 
RMDvalue = []       # Empty lists for RMD. 
RMDpctvalue = [] # Empty list for RMD %. 
 
for n in range(0, source_len): 
   dataval_list.append('data_val_v'+str(n)) 
   dataval_list[n] = defaultdict(dict) 
   difval_list.append('dif_v'+str(n+1)+'-v'+str(source_len)) 
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   difval_list[n] = defaultdict(dict) 
   difval_list.append('dif_v'+str(n+1)+'-v'+str(source_len)) 
   difval_list[n] = defaultdict(dict) 
   RMDvalue.append('RMD_v'+str(n+1)+'-v'+str(source_len)) 
   RMDvalue[n] = defaultdict(dict) 
   RMDpctvalue.append('RMDpct_v'+str(n+1)+'-v'+str(source_len)) 
   RMDpctvalue[n] = defaultdict(dict) 
 
# Set up a set and an empty list for azimuths. 
az_vals = set() 
az_values = [] 
 
#Define the previous line (any string should work). 
prevline = 'first next line' 
 
for currentline in input_data: 
 
# Find the azimuth before reading data lines. 
    match = re.search('DEG F', prevline) 
    if match: 
       data_list = currentline.split() 
       azimuthval = data_list[2] 
       azimuth = float(azimuthval) 
       azint = int(azimuth) 
       azstr = str(int(azimuth)) 
       az_vals.add(azimuth) 
       az_values.append(azimuth) 
 
# Find site and type of data (e.g., range), and read in data. 
 
    match = re.search('MET FILE:', currentline) 
    if match: 
       metfile = ntpath.basename(currentline) 
       sys_list = re.split("_", metfile) 
       sys = sys_list[0] 
       site = sys_list[1] 
       site_datetime = sys_list[1] + "_" + sys_list[2] 
       for k in range(0, source_len): 
         if sys == source_list[k]:     # k is set to the source's index number in source_list. 
            break 
       site_and_az = site + "_" + azstr 
 
    match = re.search('END OF Data', currentline) 
    if match: 
       data_list = prevline.split() 
       dataval_list[k]['radial_dist'][str(int(azimuth))] = data_list[1] 
       dataval_list[k]['range'][str(int(azimuth))] = data_list[2] 
       dataval_list[k]['deflection'][str(int(azimuth))] = data_list[3] 
    else: 
       prevline = currentline 
 
sorted_azvals = sorted(az_vals)     # Sort on azimuths. 
# 
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# Compute difference values. 
# 
# Create empty lists for the various statistics for RMD in m and % of radial distance. 
sum_RMD_list = [] 
sum_RMDpct_list = [] 
mean_RMD_list = [] 
mean_RMDpct_list = [] 
median_RMD_list = [] 
median_RMDpct_list = [] 
 
for n in range(0, source_len-1): 
   RMD_list = [] 
   RMDpct_list = [] 
   for azim in sorted_azvals: 
      radial_dist_dif = float(dataval_list[n]['radial_dist'][str(int(azim))]) - 
float(dataval_list[source_len-1]['radial_dist'][str(int(azim))]) 
      range_dif = float(dataval_list[n]['range'][str(int(azim))]) - float(dataval_list[source_len-
1]['range'][str(int(azim))]) 
      deflection_dif = float(dataval_list[n]['deflection'][str(int(azim))]) - 
float(dataval_list[source_len-1]['deflection'][str(int(azim))]) 
      RMDvalue[n][str(int(azim))] = (range_dif*range_dif + deflection_dif*deflection_dif)**0.5 
      RMDpctvalue[n][str(int(azim))] = float(RMDvalue[n][str(int(azim))]) / 
float(dataval_list[source_len-1]['radial_dist'][str(int(azim))]) * 100 
      RMD_list.append(RMDvalue[n][str(int(azim))]) 
      RMDpct_list.append(RMDpctvalue[n][str(int(azim))]) 
 
#  Mean and median values for all azimuths for each input source.   
   mean_RMD = statistics.mean(RMD_list) 
   mean_RMDpct = statistics.mean(RMDpct_list) 
   median_RMD = statistics.median(RMD_list) 
   median_RMDpct = statistics.median(RMDpct_list) 
   mean_RMD_list.append(mean_RMD) 
   median_RMD_list.append(median_RMD) 
   mean_RMDpct_list.append(mean_RMDpct) 
   median_RMDpct_list.append(median_RMDpct) 
# 
#OUTPUT SECTION: output generated here although some output strings composed earlier in 
program. 
# 
if append_or_not == 'a': 
   x = 'a' 
else: 
   x = 'w' 
with open(output_file, x) as fo: 
   print('Writing to file: ', output_file, "\n\n") 
   title_string = 'RMDs for ' 
   for n in range(0, source_len-1): 
     if(n <  source_len-2): 
       title_string = title_string + source_list[n] + ' and ' 
     else: 
       title_string = title_string + source_list[n] 
   title_string =  title_string + ' less ' + source_list[source_len-1] 
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   header_string='{0:42s}\n{1:19s}{2:5s}\n'.format(title_string,' for site and date/time: ', 
site_datetime) 
   fo.write(header_string) 
   header_string='\n{0:43s}\n'.format('System    Azimuth     RMD (m)     RMD (%)') 
   fo.write(header_string) 
    
   for azim in sorted_azvals: 
     for n in range(0, source_len-1): 
       rmd_string = '{0:8s} {1:7.1f}   {2:8.1f}    {3:8.3f}\n'.format(source_list[n], float(azim), 
float(RMDvalue[n][str(int(azim))]), float(RMDpctvalue[n][str(int(azim))])) 
       fo.write(rmd_string) 
 
   header_string='\n{0:43s}\n'.format('System         Mean RMD (m)  Mean RMD (%)') 
   fo.write(header_string) 
 
   for n in range(0, source_len-1): 
     mean_string = '{0:16s} {1:8.2f}   {2:8.3f}\n'.format((source_list[n]+'_mean_RMD'), 
float(mean_RMD_list[n]), float(mean_RMDpct_list[n])) 
     fo.write(mean_string) 
   for n in range(0, source_len-1): 
     median_string = '{0:16s} {1:8.2f}   {2:8.3f}\n'.format((source_list[n]+'_median_RMD'), 
float(median_RMD_list[n]), float(median_RMDpct_list[n])) 
     fo.write(median_string) 
   if x == 'a': 
     fo.write('\n\n') 
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Appendix B. Python 3 Code (gtstats.py) 
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This appendix has the Python 3 code (gtstats.py) for computation of overall means, 

medians, and standard deviations of all radial miss distances (RMDs) for each 

source of meteorological (MET) data. The identifiers of the MET data sources (e.g., 

WRF1) are read from the first line of the input file (e.g., output_tables). 

 
#!/bin/env python3 
 
import re 
import sys 
from collections import defaultdict 
import string 
import statistics 
 
#NOTE: sys.argv[0] is the program (e.g., gtstats.py). 
with open(sys.argv[1], "r") as g: 
     first_line = g.readline()       #Only read first line. 
     input_data = g.readlines()  #All other lines read in. 
 
match = re.search('RMDs for', first_line) 
if match: 
     first_list = first_line.split() 
     length_firstlist = len(first_list) 
 
output_file = 'RMD_statistics_out'  
print('\nReading from file: ', sys.argv[1], "\n") 
 
source_list = [] 
for n in range(2, length_firstlist, 2): 
   source_list.append(first_list[n]) 
 
variable_val = defaultdict(dict) 
variable_pctval = defaultdict(dict) 
site_str = defaultdict(dict) 
 
var_list = [] 
length_list = [] 
length_pctlist = [] 
var_mean_list = [] 
varpct_mean_list = [] 
var_median_list = [] 
varpct_median_list = [] 
var_stdev_list = [] 
varpct_stdev_list = [] 
# 
# Fill lists with values from input file and compute various statistics.  
# 
prevline = "prev line" 
 
for n in range(0, len(source_list)-1):  
 variable_datalist = [] 
 variable_pctlist = [] 
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 for currentline in input_data: 
   match = re.search('Azimuth', prevline) 
   site_str[n] = source_list[n] + '   ' 
   #print('site_str[n] ', site_str[n]) 
   match = re.search(site_str[n], currentline)        
   if match: 
       var_list = currentline.split() 
       varlist_len = len(var_list) 
       variable_val[site_str[n]] = float(var_list[2]) 
       variable_pctval[site_str[n]] = float(var_list[3]) 
       variable_datalist.append(variable_val[site_str[n]]) 
       length_list.append(len(variable_datalist)) 
       variable_pctlist.append(variable_pctval[site_str[n]]) 
       length_pctlist.append(len(variable_pctlist)) 
 #Compute various statistics. 
 var_mean = statistics.mean(variable_datalist) 
 varpct_mean = statistics.mean(variable_pctlist) 
 var_median = statistics.median(variable_datalist) 
 varpct_median = statistics.median(variable_pctlist) 
 if(len(variable_datalist) > 2): 
   var_stdev = statistics.stdev(variable_datalist) 
   varpct_stdev = statistics.stdev(variable_pctlist) 
 else: 
   var_stdev = -999 
   varpct_stdev = -999 
   no_stdev_string = 'NO STANDARD DEVIATION COMPUTED FOR DATA LIST ' + str(n) + ' - LESS 
THAN 3 SAMPLES !!'   
   print(no_stdev_string) # Since n starts at 0 it's the first data list. 
 
 #Append statistical values to respective lists. 
 var_mean_list.append(var_mean) 
 varpct_mean_list.append(varpct_mean) 
 var_median_list.append(var_median) 
 varpct_median_list.append(varpct_median) 
 var_stdev_list.append(var_stdev) 
 varpct_stdev_list.append(varpct_stdev) 
      
 prevline=currentline 
 
#Check for equal number of items in data lists. 
for n in range(0, len(source_list)-1): 
  if length_list[n] != length_pctlist[n]: 
   print("List length mismatch!\n") 
   print("variable_datalist = ", len(length_list), " variable_pctlist = ", len(length_pctlist)) 
# 
# Output section: mean and median values. 
# 
with open(output_file, "w") as fo: 
    print('Writing to file: ', output_file, "\n") 
    header_string = 'Means, medians, and standard deviations of ' + str(len(variable_datalist)) + ' 
individual RMDs\n' 
    fo.write(header_string) 
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    header_string = '\n        Means\n Data Source     (m)   (%Range)\n' 
    fo.write(header_string) 
    for k in range(0, len(source_list)-1): 
      data_string = '    {0:9s} {1:7.2f} {2:7.3f}\n'.format(source_list[k], float(var_mean_list[k]), 
float(varpct_mean_list[k])) 
      fo.write(data_string)  
    header_string = '\n        Medians\n Data Source     (m)   (%Range)\n' 
    fo.write(header_string) 
    for k in range(0, len(source_list)-1): 
      data_string = '    {0:9s} {1:7.2f} {2:7.3f}\n'.format(source_list[k], float(var_median_list[k]), 
float(varpct_median_list[k])) 
      fo.write(data_string)  
    header_string = '\n        Std Deviations\n Data Source     (m)   (%Range)\n' 
    fo.write(header_string) 
    for k in range(0, len(source_list)-1): 
      data_string = '    {0:9s} {1:7.2f} {2:7.3f}\n'.format(source_list[k], float(var_stdev_list[k]), 
float(varpct_stdev_list[k])) 
      fo.write(data_string)  
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List of Symbols, Abbreviations, and Acronyms 

ARL US Army Research Laboratory 

ARDEC US Armaments Research and Development Center 

CMD-P Computer, Meteorological Data–Profiler 

GTRAJ General Trajectory 

MET meteorological 

METCM computer MET message 

MMS-P Meteorological Measuring Set – Profiler 

PVM Profiler Virtual Module 

RAOB radiosonde observation 

RMD radial miss distance 

WRF Weather Research and Forecasting 
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